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Abstract

Deep learning methods have recently started dominating the machine learn-

ing world as they offer state-of-the-art performance in many applications. Un-

fortunately, the learning and evaluation of deep models is time-consuming,

sometimes prohibitive, on resource-constrained devices such as phones and mo-

bile hardware. Conditional computation attempts to alleviate this problem by

selectively computing only parts of some model at a time.

This thesis investigates the use of reinforcement learning algorithms as a

tool to learn the computation selection strategies inside deep neural network

models. Efficient ways of structuring these deep models are proposed, as well

as parameterizations for activation-dependent computation policies. A learning

scheme is then proposed, motivated by sparsity and computation speed as well

as the desire to retain prediction accuracy. By using a regularized policy gra-

dient algorithm, policies are learned which allow stable performance at a lower

computational cost. Encouraging empirical results are presented, suggesting

that the general framework presented in this work is a sensible basis for the

problem of conditional computation.
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Résumé

Les méthodes d’apprentissage profond ont récemment commencé à dominer

le monde de l’apprentissage automatique car elles offrent des performances à

l’état de l’art dans de nombreuses applications. Malheureusement, l’apprentissage

et l’utilisation de ces modèles profonds est très demandant en ressources com-

putationelles, voir même impossible sur des plateformes avec des ressources

limitées, tels que les cellulaires et autres appareils mobiles. Le calcul condi-

tionel tente de règler ce problème en sélectionnant activement certaines parties

du modèles à calculer.

Cette thèse explore l’utilisation d’algorithmes d’apprentissage par renforce-

ment comme outil pour apprendre des stratégies de calcul conditionel à l’intérieur

de réseaux de neurones profonds. Des manières efficaces de structurer ces mod-

èles profonds sont proposées, ainsi que des paramétrisations pour des politiques

de calcul conditionel dépendantes des activations neuronales. Une méthode

d’apprentissage est proposée, motivée par le calcul éparse et le temps de cal-

cul, ainsi que le désir de maintenir la précision des prédictions. En utilisant

des algorithmes de policy gradient régularisés, les politiques de calcul apprises

permettent d’obtenir des performances stables à un coût de calcul moindre.

Des résultats empiriques encourageants sont présentés, suggérant que les algo-

rithmes présentés dans ce travail sont une base sensible pour le problème du

calcul conditionel.
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1
Introduction

Even before the advent of computers and microcomputers, several ideas relating com-

putation and biological neurons made their way into science. From the demonstration

of logical formalisms through neurons by McCulloch and Pitts (1943) to the works of

Hebb (1949), Rosenblatt (1958) and many others, the idea of artificial neural networks

began to flourish.

Artificial neural networks are a class of functions that compute their output val-

ues using structures that are inspired by mammalian brains, made of interconnected

networks of neurons each doing some part of the computations that give rise to intel-

ligence.

It was only later in the 1970s and 1980s that the modern form of artificial neural

networks began to be used. By reusing simple ideas from modern calculus (Newton,

1671; Leibniz, circa 1674) the idea of learning the configuration of artificial neural net-

works through gradients and most notably through the backpropagation algorithm,

popularized by Rumelhart et al. (1988), increased the appeal of artificial neural net-

works.

Although appealing at that time, the failure of this so-called connectionism to

deliver many promising results beating other contemporary machine learning methods

apparently led the community to regard any neural based work with much skepticism.

In the early 2000s, publications based on artificial neural networks started gaining

1
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traction, with highly cited works works such as Hochreiter and Schmidhuber (1997),

LeCun et al. (1998a), Hinton and Salakhutdinov (2006), inter alia. Artificial neural

networks are now the state-of-the-art for many machine learning problems; because of

their capacity for end-to-end learning, i.e. their intrinsic ability to reason about any

given level of abstraction, they can be successfully applied to many problems beyond

the reach of traditional machine learning algorithms.

The same era saw the advent of reinforcement learning. Concerned with temporal

decision making, reinforcement learning found its origin in the 1950s with Dynamic

Programming and the work of Bellman (1956). From trial-and-error methods in ban-

dits (Robbins, 1952; Gittins, 1979), the field evolved to use methods based in temporal

difference (Samuel, 1959; Barto et al., 1983), leading to many popular successes such

as Tesauro (1995)’s TD-Gammon AI.

Reinforcement learning regroups many powerful learning algorithms and provides a

framework to understand and learn how agents can take actions in their environment.

There are many possible goals in such a framework. For example, given some agent’s

behaviours, it is possible to learn what reward model motivated it; or given reward

signals, it is possible to learn which behaviours maximize that reward.

When combined with powerful learning methods such as artificial neural networks,

reinforcement learning algorithms can achieve groundbreaking results in many do-

mains, such as games (Mnih et al., 2013) and robotics (Levine and Abbeel, 2014).

Another direction which this alliance between artificial neural networks and re-

inforcement learning can take is to learn to make decisions inside neural networks

(Mnih et al., 2014; Zaremba and Sutskever, 2015), which normally compute real num-

bers with differentiable functions, and do not allow for intermediary computations to

be discrete (e.g. a yes/no decision). Such discrete decisions can be useful, but require

techniques such as reinforcement learning to be learned.

This work is concerned with such a setting, where decisions on whether to perform

computations will be learned using reinforcement learning, in the context of learning
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artificial neural networks. Taking such decisions based on the input in order to reduce

computation time is called conditional computation.

In large artificial neural networks, it is common that most neurons are not activated

at any given time. In fact, as hardware is getting better, state-of-the-art models get

overly large and expensive to compute, and finding efficient ways of using these models

is becoming a important research and application concern. As such, it is useful, in

neural networks, to predict which parts are activated and necessary to compute, which

this work attempts to solve under the framework of conditional computation. This

gives rise to several problems: how to learn these activation patterns? how to group

neurons together? how to organize computation in a hardware-efficient manner?

In the second and third chapter we introduce artificial neural networks and rein-

forcement learning, and explain how they allow models to learn from the world. In

the fourth chapter, we introduce the notion of conditional computation in artificial

neural networks and how it can be framed as a reinforcement learning problem. Fi-

nally, in the fifth chapter we show experimental results demonstrating the potential

of this approach, describing future work and concluding in the sixth chapter.



2
Artificial Neural Networks

2.1 Supervised learning

with function approximators

In this section, we define many basic concepts related to machine learning that are

necessary to understand this work. A comprehensive and in-depth survey of these

concepts is available in Murphy (2012).

2.1.1 Functions of data distributions

At the core of machine learning is the idea that there exist some natural data-

generating distributions, typically denoted D, from which we can collect samples,

and which have some predictability.

A simple and interesting case is when samples from these distributions come in

the form of pairs (X, Y ) ∼ D, where Y ∈ Y is some desirable representation, or label,

for an accompanying X ∈ X . X and Y are sets representing the possible values that

are generated by the data. In most cases, these sets can be reduced to vectors in Rn.

For example, we can generate images using a camera and then later on label each

image with a set of tags denoting the presence or absence of objects, say, we could

distinguish between humans, dogs, cats, or cars. In this case, the space of Xs, X ,

4
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would be the pixel space, and the space of Y s, Y , would be binary vectors of length

4, with each component denoting the presence (or absence) of each type of object.

In such a scenario, we say that there exists a function f : X → Y that maps each

fixed sized input X to some representation Y such that for every actual sample (x, y)

from D we have f(x) = y.

In fact, there exists a whole family of functions that map from X to Y . Unfortu-

nately, most of them do not have the latter property, where f(x) = y for any sample

of D.

Finding a “good” function in this set of functions when we are given a number of

(x, y) samples from D is what is typically called supervised learning, since the ys

allow us to explicitly know the right answer and directly supervise learning.

2.1.1.1 The I.I.D. assumption

In supervised learning, an important assumption is made with regards to how the data

is collected, before being fed to a learning algorithm. It is assumed that each example

X, or example pair (X, Y ), is collected from independent and identically distributed

random variables.

What this means is that examples have no relation to one another, except for

being drawn from the same distribution. They have no temporal relation and no

causal relation (an example doesn’t follow another).

This allows us to make several other assumptions which greatly facilitates mod-

elling the data. A simple example is approximating expectations: given N i.i.d. data

points xi ∼ X , say we want to estimate E{X}, then (since the points are i.i.d.) the

mean of the points is an unbiased estimate of the expectation.
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2.1.2 Function approximators

When given some small X and some Y , e.g. X = {1, 2, 3}, it is easy to simply store

all the possible answers. Unfortunately this scenario rarely ever happens in practice.

When faced with a large discrete input space, there is an incredibly large number

of functions to chose from. Worse, in the continuous case, the set of functions becomes

uncountably infinite. In any case, there are many more functions than what can fit

in a computer, or be tested using a computer in less than the age of the universe.

As such, one solution to this problem is to use function approximators.

Instead of explicitly mapping each possible x to some y, function approximators

use rules and algorithms to determine y given some x. It is common to make a

function approximator f depend on a set of parameters θ = {θ1, ..., θn} which are

used to compute y given x. Given many pairs of (x, y) we might be able to find the

value of each θi which fits the best.

Let us note a few things. First, even though the number of functions of the form

f(x; θ) is not strictly smaller than the number of functions f : R → R (we are in

an uncountable infinite setting), the number of significantly different configurations

a computer has to try is effectively now much smaller (for a reasonable number of

parameters).

Second, it is very probable that some random distribution D will not be fit very

well by f(x; θ), if at all. We will revisit fitness, but in general, it is a measure of how

well one function approximates another.

Last, we now have a sensible way of exploring this subspace of functions of the form

f(x; θ). All that is necessary is to pick a value for each θi and see how it performs.

Using function approximators can be seen as a trade-off between finding exactly

correct functions, and the number of functions that we have to try before finding the

right one. It is especially true in the continuous input space case.
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2.1.3 Linear models

Linear models are among the simplest models to learn functions from Rn to R, or to

Rm. In the case of f : Rn → R they are typically denoted as:

f(x) = xT w,

where x ∈ Rn is an input vector and w ∈ Rn is a parameter vector, or weight vector.

It is common to also add a bias term:

f(x) = xT w + β,

where β ∈ R is a scalar parameter. We denote the set of parameters as θ = {w, β}.

In the case of f : Rn → Rm we typically have this notation:

f(x) = xT W + b,

where x ∈ Rn×1 is the input, W ∈ Rn×m is a weight matrix, and b ∈ Rm is a bias

vector.

2.1.4 Learning linear models

Given some collection of nD data samples D = {(x1, y1), ..., (xnD
, ynD

)} we may want

to find which model performs the best according to some measure.

A common and easy-to-understand measure of loss, or error, is the so called mean-

squared-error (MSE):

L = 1
nD

nD∑
i=1
∥f(xi)− yi∥2

2

MSE is a proxy for the fitness of a function, meaning that as the error gets lower, the

function is more apt to make predictions about unseen (x, y) pairs 1.
1This is only true if we make several assumptions, most importantly, the assumption that each

(x, y) pair was sampled from identically and independently distributed (i.i.d.) random variables. The
i.i.d. assumption is important in supervised learning, and is not always true, which we will see in
particular in chapter 3.



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 8

Such proxies for error allow us to define optimal parameters, θ∗, as the parameters

that minimize the given error measure L with respect to the given data D:

θ∗ = argminθ L(D)

In the case of linear models, finding such parameters is relatively trivial, since

it is possible to find θ∗ in closed form, for example in Ordinary Least Squares (see

Dismuke and Lindrooth (2006)) the optimal W can be found by analytically finding

the minimizing value:

W ∗ = (XT X)−1XT Y, (2.1)

where X is the matrix of xis and Y the matrix of yis.

Such a solution might not be stable, e.g. if X is ill-conditioned, making the inverse

numerically hard to compute. An alternative way to find an optimal W is presented

in Section 2.1.7.

Linear models are simple and fail to capture more complex distributions. For

example a linear model cannot accurately perform regression on data generated from

quadratic or exponential functions. Linear models can only separate two regions in

the input space by a hyperplane, which again fails to capture more complex scenarios.

Most models that are able to capture additional complexity cannot be solved

analytically. Their closed form solution (i.e. to compute θ∗) is either intractable or

inexistant, and they require other techniques to find “optimal” (or reasonably good)

parameters.

2.1.4.1 Feature engineering

One way to get around having to use more complex models is, given a problem, to

transform input vectors into “meaningful” vector representations using hand-coded

algorithms (Harris, 1954; Lowe, 2004). This is called feature engineering, and has for

many years been vital to most machine learning applications.
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For example, when using pixel-space inputs, each pixel gives very little informa-

tion; it is only the combination of them that means something. As such, we could

decide to extract the position of objects in the input image using computer vision al-

gorithms (Bay et al., 2006), and then represent these as vectors for our linear model.

We call these new vectors features and often denote them as ϕ(x).

Designing relevant features is hard. One of the explicit goals of machine learning

research is to design methods that can greatly minimize this engineering effort, and

thus save many hours of experts hand-designing features. If a computer can discover

these features by itself, then we can spend more time designing the next level of

complexity.

2.1.5 Non-linearities

It often happens that the output domain Y can be restricted to domains such as [0, 1]n

or [−1, 1]n. In this case it is often useful to “restrict” the possible output values of

our function approximators as well.

The logistic function (which is a type of sigmoid function, but is often referred to

as the sigmoid function in the literature, see LeCun et al. (1998b)) is a function from

R to [0, 1], and is often denoted as σ(x)

σ(x) = 1
1 + e−x

Applying it on every element of a vector x ∈ Rn effectively restricts the range of

the outputs to [0, 1]n, and is also typically denoted as σ(x).

Another commonly used non-linearity is the hyperbolic tangent function, tanh,

which has range [−1, 1] and which also has this nice S-shape. In Neural Networks

these non-linear functions are commonly referred to as activation functions.

The reason why such functions are preferable to simply clamping the output of

our function approximators to [0, 1] or [−1, 1] is that they make the function differ-
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Figure 2.1: The logistic function

entiable. Combined with a differentiable loss or cost function, they allow learning

to take place, as we will see in the next two sections.

Another commonly used function is the softmax function2 . This function is useful

when the output vector of our function approximators, Y , represents the probabilities

of mutually exclusive events:

softmax(x)i = exi∑
j exj

= pi

where softmax(x)i = pi is the ith element of the output of the softmax, and where

xi is the ith element of the input of the softmax. Since ∑i pi = 1, each pi can be

interpreted as a probability, which can be very useful in many contexts including

classification.
2which should really have been named soft-arg-max, since the max will have its associated value

closest to 1 and the min closest to 0. This retains some (soft) measure of relatively how much the
max really is the max, and tells us which value is the argmax, and has nothing to do with the value
which is the “max” (in fact that information is lost through this transformation).
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2.1.6 Gradient Descent

A common algorithm used in optimization is gradient descent, summarized in Algo-

rithm 1. In its simplest incarnation, it is a procedure that iteratively finds some value

x that minimizes (or maximizes, in gradient ascent) some value f(x) by following

the first order derivative. When x is a vector in Rn, the vector of partial derivativa-

tives is denoted ∇xf =
[

∂f
∂x1

... ∂f
∂xn

]
and is called the gradient of f with respect to x.

Since it is not possible to take infinitesimal steps in a computer, these derivatives are

“followed” at a certain rate α (with typically α < 1).

initialize x to some initial guess (can be random);

while x has not converged do
x← x− α∇xf(x)

end
Algorithm 1: Gradient descent

If f is a convex function and in each iteration α is decreased in the limit to

0, x is guaranteed to be the global minimum of f . In the non-convex case no such

guarantees are available. Fortunately, by using assumptions about f , such as Lipschitz

continuity, it is possible to reach interesting local minima using gradient descent (see

Bottou (2010)).

Note that here convergence is meant in the broad sense of “x does not change by

more than some ϵ”. In practice, there are more precise measures of when and how to

stop gradient descent, even when x might still be changing (see for example Yao et al.

(2007)).

2.1.7 Learning differentiable models

The unfortunate side effect of using non-linearities (or any more complex models), is

that they make closed-form solutions impractical or even non-existent. Fortunately,

when these non-linear models are differentiable, they can still be learned from data.
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Given a loss function such as the MSE, it is easy to find the gradient of the loss:

L = 1
nD

∑
x,y∈D

∑
i

(f(x)i − yi)2

with respect to the parameters, W and b that form f(x):

f(x) = σ(xT W + b)

for example in this particular case, the gradient of L with respect to W , denoted

∇WL has the form:

∇WL = 2
nD

∑
x,y

[(f(x)− y)⊙ f(x)⊙ (1− f(x))] xT

Where⊙ represents the element-wise matrix multiplication, also known as the Hadamard

product.

When σ is replaced with the identity function, we have a linear model, with the

following gradient:

∇WL = 2
nD

∑
x,y

(f(x)− y)xT (2.2)

By using gradient descent, as defined in Algorithm 1 above, we can follow these

gradients in order to minimize the loss function L. In this setting α is some small

number, typically well below 1, and is often referred to as the learning rate.

Note that by following the gradient in (2.2), the same solution as (2.1) is obtained

in convergence, without the problems of ill-conditioned matrices.

By following this gradient, we minimize the loss function L and thus increase the

fitness of our model. This simple method, using gradient descent, is used to learn

a wide variety of models, simple and complex, which have the property of being

differentiable.

2.1.8 The bias-variance trade-off

Given a complex enough problem, a complex model of the data is necessary. This

creates a new problem, which is to choose the appropriate model complexity.
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A common approach when designing machine learning algorithms, and selecting

the best model out of many, is to separate the available data into three sets: training

set, validation set, and testing set.

The training set is used to train the models and their parameters (it is the data

that the learning algorithm sees). When all the models are trained, we can compare

their performance on unseen examples from the validation set to see how well they

generalize. Doing this many times might bias our selection; as such, it is necessary to

report the performance of the best selected model on the last set, the test set.

We can also characterize this problem in terms of bias and variance: given a dataset

D = {(x1, y1), (x2, y2), ...}, and a parameterized model fθ : X → Y , if f(xi) is very

close to yi for every example, we say that the model has low bias. The predictions

that it makes are exact, at least for the examples that it knows. If on the other hand

f(xi) is on average rather far from yi, then the model has high bias.

Consider that we remove a some examples from the training dataset, and put them

in another set V (the validation set). If the resulting function changes drastically

when removing these examples (in V ), then we say that it has high variance.

Models with high variance can be in the regime of overfitting. If changing the

dataset slightly completely alters the function, it means that the function probably

learned each example by heart, and will generalize poorly to unseen examples.

Models with high bias can be in the regime of underfitting. One can see this

as the model generalizing too much, and making broad assumptions about the data

when in reality the input distribution is more complex.

Note that the complexity of a model is typically controlled by various values, e.g.

the number of neurons in a neural network. Such values are called hyperparame-

ters because they cannot be directly optimized by the learning algorithms, and as

such are typically compared by retraining the model with several different values and

comparing the resulting validation errors, as explained earlier.
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2.1.9 Regularization

Regularization is key in many machine learning approaches. It is often easier (mainly

for optimization reasons) to build and learn models with potentially high variance,

but to regularize them.

The goal of regularization is to push optimization in a certain direction that makes

the learned model have certain desirable properties. For example it can be desirable

to prevent a model from learning some input-output (x, y) pairs by heart, since we

want models to generalize. It can be desirable to force a model not to use all of its

input features if we suspect that some of them are not indicative of the output (but

don’t know which ones).

Regularization is a widely studied subject in statistical estimation; the most com-

mon one that is found in machine learning is weight decay, also known as L1 (Tib-

shirani, 1996) or L2 regularization (also known as Tikhonov regularization, see Ng

(2004)). L2 regularization consists in adding a term to the loss which penalizes the

squared Frobenius norm of the weight vector:

LL2 =
∑

i

θ2
i

while L1 regularization consists in the sum of the absolute values of every θi:

LL1 =
∑

i

|θi|

Optimizing a regularized model is typically described as minimizing such as loss

function (in this case L2 for MSE):

L =
n∑

i=1
∥f(xi; θ)− yi∥2

2 + λ
nθ∑
i=1

θ2
i

where λ is a hyperparameter which decides the strength of the regularization.

One effect of these parameter norm regularizations is that it becomes harder for

the model to learn extreme weight values and overfit to the data, i.e. fitting (x, y)

pairs in the training set exactly at the expense of predicting extreme values for xs
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that are not in the training set, effectively learning output values by heart. Choosing

λ is not obvious, if λ is too small and the supervised loss outweighs the regularization

loss, then the model will always learn to use the available complexity, if λ is too large,

the model might not learn anything.

2.2 Depth and distributed representations

The function space of models defined with a single matrix multiplication and non-

linearity is quite restricted. One of the great machine learning contributions of the

1990s, and more significantly the first decade of the 2000s, was the effort towards

making artificial neural networks a mainstream technique, developing methods for

them which became known as Deep Learning.

2.2.1 The Multilayer Perceptron

The initial intuition behind artificial neural networks (and a manifestation of the

model that we have seen in Section 2.1.3) was originally known as the Perceptron

(Rosenblatt, 1958). The Perceptron is a simple two-class classifier, with the form:

f(x) = class(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, when xT θ + b > 0

0 otherwise

accompanied by a simple learning rule:

θi ← θi − α(y − f(x))xi

which, if we look closely, is the same learning rule as a linear model (with a single

output unit) when using the gradient of the MSE, as in (2.2).

Such a model is commonly depicted as a series of units, representing each dimen-

sion of the input vector x, linked to a single output unit representing the resulting

computation f(x), as in Figure 2.2.
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Figure 2.2: The Perceptron, here depicted with 6 input units and a single output unit.

The problem with such a simple model, is that it can only linearly separate the

input space X , and cannot solve many problems, such as the infamous XOR problem.

There is no parameterization of θ than can correctly classify the XORing of two bits

(i.e. predict 0 for [0;0] and [1;1], and predict 1 for [0;1] and [1;0]).

A solution to this problem is to add intermediate layers, or hidden layers, to the

model. This idea was already discussed in the early 1960s, and notably made its way

in machine learning through the works of Werbos (1974) and Rumelhart et al. (1988).

For example, a single hidden layer network is formulated as:

h(x) = σ(xT Wh + bh)

f(x) = σ(h(x)T Wo + bo)

h(x) is typically referred to as hidden units, hidden activations, feature vectors, in-

termediate representations, or inner representations. Note that the set of all the

parameters (all Wi matrices and bi vectors) is often represented as a single vector θ.

Such an architecture is commonly referred to as multilayer perceptrons (MLP), and

as fully-connected architectures (due to the dense nature of matrix multiplications,

each neuron is connected to all other neurons in its following layer).

It is possible to add as many intermediate layers as desired, but of course more

layers are harder to learn (see Section 2.3.4; Hochreiter (1991); Bengio et al. (1994)), at

least without many tricks (some of which we expose in Section 2.3). This is equivalent
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to composing many functions, for example a n layered model:

f(x) = (fn ◦ ... ◦ f2 ◦ f1)(x)

where fi(h) = gi(hT Wi + bi)

gi is the activation function of layer i

The computation of f(x), done by first computing the activations of the first layer,

then the next up until the last, is called feed-forward propagation.

Figure 2.3: A multilayer perceptron with 2 hidden layers, one of 6 units, one of 3
units. The output layer has 2 units.

This model is useful for many reasons. First, it can solve the XOR problem very

simply. Second, it is capable of representing a wide variety of functions, as proved by

Cybenko (1989)’s universal approximation theorem (also Hornik (1991)), many orders

of magnitude more complex than the XOR function. Finally, it is efficient because it

can learn distributed representations.

These multi-layered models give rise to depth, and the techniques that are asso-

ciated with them are regrouped under the umbrella of Deep Learning (LeCun et al.,

2015; Goodfellow et al., 2016).

2.2.2 Convolutional Neural Networks

Another popular type of layer that is used for any image-related task (and some signal

related tasks, even language) is convolutional operations (Fukushima, 1980; LeCun
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et al., 1998b; Krizhevsky et al., 2012). The convolution between a k-channeled image

I and a set W of n k-channeled filters of size w × h is defined as:

(I ∗W )nxy =
k∑

c=0

w∑
i=0

h∑
j=0

IcuvWncij

where u = x + i− ⌊w2 ⌋ v = y + j − ⌊h2 ⌋

There are many reasons why this computational structure (illustrated in Figure

2.4) is strong, especially when dealing with images. Notably, it imposes a strong

prior on the neural network: patterns repeat themselves across images. As such,

there is no need to relearn the same feature detector to detect the same pattern

at different locations in an image since, by its nature, the convolutional operator

will allow the model to detect a pattern whatever its location. There are also many

clear mathematical properties of convolution that make such a structure elegant when

dealing with signals. In addition, there are many computational advantages to using

convolutions since the computation is very dense, and well suited for modern hardware

to take advantage of.

Figure 2.4: Illustration of the computations in a convolutional network, with n = 1,
k = 1, w = 3, h = 3, and from left to right (x, y) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. See
Dumoulin and Visin (2016) for a complete reference.

2.2.3 Distributed Representations

Consider, in a multi-layer perceptron, that a given hidden unit hj receives all its

input units through the vector of weights W:j, and that upon seeing its input it takes

a value that is either positive or negative. In a sense this unit “detects” whether the
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input matches W:j or not. This behaviour is commonly described as the unit being a

pattern detector.

By having n1 hidden units connected to the input, we can detect n1 different

independent3 patterns (of which there are 2n1 possible combinations). As such the

representation for the input (which is the vector h obtained) is distributed among

each component of the vector.

Consider a hidden unit in the next layer. By the same reasoning it will detect

a “pattern of patterns”. Intuitively, we can “choose k” from n1 patterns. With n2

hidden units in this second layer, one can imagine that we can roughly identify O(n1n2)

patterns from the input space. In fact for every layer we add, we gain exponentially

in the number of input patterns we can “detect”.

This intuition was recently formalized by Montufar et al. (2014) in terms of the

number of separable linear regions in the input space. They showed that for a deep

model with L layers of width n, the maximal number of linear regions per parameter

grows exponentially fast:

Ω
(

(n/n0)n0(L−1) nn0−2

L

)

Another intuition for representations is the following. At each layer, the network

combines certain components of these distributed representations to create a new

representation. This is akin to increasing levels of abstractions. As we go deeper in

the network, we go from low-level features (e.g. in image space horizontal or diagonal

lines) to high-level, abstract features (e.g. eyes, smiles, chairs, etc.).

2.2.4 Learning Deep Neural Network models

Learning of Deep Neural Network (DNN) models is typically done with gradient

descent, and variations of it. Most importantly, in order to be efficient, it is done
3Here independence is not meant in the probabilistic sense, but in the sense that each pattern

captures a different factor of variation of the data (and factors of variation are often correlated with
one another, but can be disentangled nonetheless).
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with the backpropagation algorithm Rumelhart et al. (1988).

Backpropagation simply arises from the chain rule in derivatives, which is that:

∂a

∂b
= ∂a

∂x1

∂x1

∂b
= ∂a

∂x1

∂x1

∂x2
..

∂xn−1

∂xn

∂xn

∂b

Consider the loss L in a DNN that depends on the input and the weights Wi, bi of

each layer. To find ∂L
∂Wi

we can use the chain rule to decompose it in terms of

∂L
∂hi

∂hi

∂Wi

Using the same reasoning we can decompose ∂L
∂hi

in terms of the partial derivatives of

the following layers j > i.

As such if there are L layers, one starts by computing ∂L
∂hL

, then ∂L
∂hL−1

, down

to the first layers. This is called backwards propagating through the network, or

backpropagation, because the “error signal”, the gradient, is computed from top

(layer L) to bottom (input layer), in the inverse order in which the feed-forward

propagation happened.

Using such a technique is much more efficient than explicitly computing each

gradient term separately, because most computations can be reused as one goes down

the layers. Additionally, it is more efficient because computing the full product of

partial derivatives when done from left to right (i.e. in backpropagation order) uses

matrix-vector operations, while computing it right to left would require matrix-matrix

operations, making it n times more costly for exactly the same result.

Once we have the gradient terms ∇WL, we can apply the gradient descent algo-

rithm to learn the optimal parameters from data:

W ← W − α∇WL

2.2.4.1 Minibatch stochastic gradient descent

In the previous section we considered a loss such as the Mean Squared Error, which

is the average error over every example in our dataset D.
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If D is very large (thousands or millions of examples), it is impractical and ineffi-

cient to compute the updates in gradient descent over every example in D, and only

then apply an update. This technique is called batch gradient descent.

Instead, one can randomly pick a single example in D, compute the loss according

to that example and then do the updates. This is known as stochastic gradient

descent (SGD), and has many advantageous properties Bottou (1998).

It is computationally inexpensive to compute the updates for a single example

versus the whole dataset, and the resulting gradient is still representative of the “right

direction” (mainly because the example is from a distribution and not noise).

Learning incrementally with different –i.i.d. sampled– examples, has the effect

of adding noise to the weight exploration, and fortunately this noise “smooths” the

non-convex error curve, making it easier for SGD to find locally optimum solutions.

In terms of computation time until convergence, SGD is much faster than batch

GD (see Bottou (2010)), mainly because even though the batch GD gradient is a

better approximation of the expected gradient, it is only relevant information near

the current weights. Since we do not know the curvature, i.e. the second-order

derivative, the gradient will most likely not remain the same as we move away from

the current weights, even if by very little. As such, one cannot take larger steps than a

certain threshold, and so it is wasteful to do batch GD since we could not compensate

longer computation times of a single update by a larger learning rate.

An interesting observation is that, in SGD, after a few iterations the weights often

do not change by a lot. As such, it is possible to compute the SGD update for many

examples at a time (using the same weights) in parallel. This transforms the normal

vector-matrix operations into matrix-matrix operations, which are much faster with

modern hardware. This is called minibatch SGD.

With a minibatch of size k, this method roughly does the equivalent of k SGD

updates, but in much less time than k SGD updates. k is typically a small power of 2,

from 16 to 128, depending on the size of the input, so as to maximize the throughput
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of matrix-matrix computations. There is a certain limit after which, for the same

reasons as above with batch GD, one cannot increase the learning rate and k, as it

becomes wasteful to compute the gradient for too many examples at a time.

2.2.4.2 Local minima and saddle points

For a long time, DNN approaches (and non-convex optimization problems in general)

were perceived to have a very large weakness. When doing gradient descent in a

non-convex setting, it seems intuitive the one would get stuck in local minima (Baldi

and Hornik, 1989; Gori and Tesi, 1992), valleys in the mountains of the error curve,

far away from the global minimum, where in every direction the error seemed to go

up. This was disproved recently by Dauphin et al. (2014).

In a deep model setting there are roughly N = Ln2 parameters, L the number of

layers and n their width, which for reasonable settings quickly sums up to millions of

parameters.

Consider the following intuition: gradient descent navigates in RN , and each point

in this space is associated with a scalar loss. Additionally this space is rather smooth,

two neighbouring points often have very similar loss values.

SGD navigates this space in a semi-random way. In our 3-dimensional intuition,

it is easy to picture a valley which would be a local minimum, in fact if we picture

a mountainous terrain (such as in Figure 2.5), often it is mostly that. In millions of

dimension, this mental image is mostly wrong. What is the probability that for every

dimension going left or right will only increase the error? In very high dimension it

is close to zero.

In fact what Dauphin et al. (2014) have found is that SGD in neural networks

mostly converges not to local minima, but saddle points, or flat regions in the error-

parameter space. Choromanska et al. (2015) also showed similar results for functions

related to neural networks. Fortunately, knowing this, there are many techniques to

get past these flat regions (also addressed in Dauphin et al. (2014)).
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Figure 2.5: A 3-dimensional landscape

2.3 Modern Tricks in Deep Learning

One of the main propellants of Deep Learning was the increasing power of hardware,

and the massive availability of data, two very important ingredients to learn complex

models that generalize well to unseen situations.

Another important part of the success of deep models is the set of techniques that

guide SGD into better solutions. Although many of those techniques do not have

proper theoretical foundations, there is often a strong intuition as to why they work.

2.3.1 Dropout

Hinton et al. (2012) introduced dropout. This method consists in randomly dropping

(multiplying by 0) activations with some probability p (which may be different for

every layer) during the feed-forward pass during training only, as to make the model

more robust at test time.

The effect that this has on a DNN is that two given units cannot coordinate or

co-adapt during training. This effectively adds redundancy in the model, but also

heavily prevents it from learning by heart. Using dropout seems to allow building
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larger models. More neurons are necessary for redundancy, but at the same time

bigger networks can model more complex input distributions, all without overfitting.

Dropout is a regularization mechanism that allowed several models to beat state-

of-the-art results (Hinton et al., 2012; Wager et al., 2013; Srivastava et al., 2014)

because it allowed larger models to be built (able to capture more complexity in the

data) that would not overfit, and is still heavily used in Deep Learning (He et al.,

2015b).

2.3.2 Autoencoders and pretraining

An autoencoder (Ballard, 1987; Bengio et al., 2007; Vincent et al., 2008) is a function

f : X → X which given some input x reconstructs it into f(x) = x̂ such that x and

x̂ resemble each other. This is typically done in two steps of computation, first an

encoder f : X → H encodes x into a hidden representation h, and then a decoder

g : H → X attemps to rebuild x from h

Achieving such a model is interesting when the inner representation h of the model

is a bottleneck: i.e., it has many less dimensions than the input. It means that the

model managed to learn a representation of the input that is smaller than the input.

In a sense, it is doing compression.

It is often the case in machine learning that there is an abundance of data, but

very little of that data is labeled, meaning that we have an abundance of xs, but little

(x, y) pairs.

As such, it is interesting to train models that are both able to do the prediction

and the reconstruction of the unlabelled data, because forcing the model to also

reconstruct other data means it will have access to more samples and will be much

less likely to overfit. Instead of directly using the inputs to predict, we can reuse the

encoder (or share weights) and build a function fpred : H → Y that takes as input the

hidden representation of the autoencoder, and predicts a value y.
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Another possibility is to first train an autoencoder, and then reuse the weights

of the autoencoder to train another predictive model. This is called pretraining,

and can be a powerful regularization mechanism as well, but is rarely used anymore.

Indeed, training a model with both the reconstruction cost and a prediction cost at

the same time (without pretraining) can by itself lead to impressive results even with

very few labelled examples (Rasmus et al., 2015).

2.3.3 Momentum and adaptive gradient descent

Momentum (Polyak, 1964) is a variant of the SGD algorithm. The idea is to maintain,

for each parameter, the overall direction in which gradient descent leads them. This

is usually maintained through an exponential moving average, µ.

Momentum gradient descent is as follows:

µ0 = 0

µt = γ∇θL+ (1− γ)µt−1

θt = θt−1 − αµt

where t represents the time of each minibatch, and γ ∈ (0, 1] represents how much

each new gradient update counts towards the average.

Another aspect of gradient descent that is changed in modern methods is the

learning rate. It can be desirable to adapt the learning rate on a per-parameter basis,

instead of globally. One such algorithm is RMSProp (Tieleman and Hinton, 2012).

RMSProp maintains an exponential moving average µ of the root mean squared

gradients, and divides the current gradient by it (as such it is akin to a learning rate).

µ0 = 1

µt = γ(∇θL)2 + (1− γ)µt−1

θt = θt−1 − α
∇θL√
µt + ϵ

where ϵ is a small number that prevents division by 0.
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As for momentum, there are many variants of adaptative learning rate methods

(see Schaul et al. (2013) and citations within), but they all revolve around these main

ideas.

Both momentum and RMSProp address the problem of the saddle point, as ex-

posed in Section 2.2.4.2. When the optimization gets “stuck” in a saddle point, for a

small enough γ momentum will simply continue in the same direction because of its

inertia, while RMSProp will quickly increase the learning rate of the “stuck” param-

eters, allowing them to move away from these saddle points (Ruder, 2016).

2.3.4 Batch normalization

Batch normalization (Ioffe and Szegedy, 2015) also addresses an optimization problem,

yet in a different way. One important problem in deep models is that in backpropa-

gation, gradient information typically becomes weaker and weaker (Hochreiter, 1991;

Bengio et al., 1994) as one goes further away from the source of the error (i.e. the

top layer).

Batch normalization uses minibatch SGD to readjust the values of each activated

unit so that it is normally distributed with respect to the other activations of the

same unit in the minibatch. For a hidden layer computed as

H = XW + b

where X is the matrix of the k examples in a minibatch, or the activations of a

previous layer, and H is the resulting matrix of n activated units, H is corrected so

that Hij becomes:

H ′
ij =

Hij − 1
k

∑k
u Huj√

VaruHuj

Intuitively, this allows the activations of each layer to be nicely distributed, and

thus for the gradient to propagate better than if the values of each layer were not

0-centered and with a constant standard deviation.
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In practice, using batch normalization speeds up learning, which is a potential side

effect of having “better” gradients.

2.3.5 Rectifiers

Rectifying linear units (Glorot et al., 2011), or ReLUs, are also another tool that

allow for better gradient propagation, they are an alternative to previously popular

activation functions such as sigmoids and hyperbolic tangents. Rectifiers are units

with the following activation function:

r(x) = max(0, x)

While strange at first, this activation function became popular as models using

them achieved much lower errors Glorot et al. (2011); He et al. (2015b). It is strange,

since it is essentially a linear unit (thus we lose the smoothness of sigmoidal functions),

but with a cutoff at zero.

One reason why ReLUs might be performing so well is that in the positive regime,

the slope (the partial gradient) of this activation unit is always 1 (as opposed to

sigmoid and tanh, where it would gradually become 0 as the activation got larger).

In backpropagation computations ReLUs remove a multiplication by the slope of the

activation, which is typically a small number, and thus deep models with rectifier

units also possibly learn faster (and better) because gradients tend not to vanish as

much with depth (He et al., 2015b).

2.4 Deep Learning

Deep models learn progressively more abstract features, in depth, by stacking varied

kinds of simple layers. They are well suited to extract simple representations from

complex inputs, making them an appealing learning framework and active area of

research.
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Deep Learning is a young and fast evolving field. This chapter only mentions the

few concepts necessary to understand the rest of this work, but there is a wide variety

of architectures, loss functions, regularizations, optimization methods, and theoretical

analyses that revolve around Deep Learning. A comprehensive survey of these facets

of Deep Learning can be found in Goodfellow et al. (2016).

Notably, even though this work has some relation to Dropout, we will not cover

its more theoretical aspects (Gal and Ghahramani, 2015). There are also many more

optimization strategies available to artificial neural networks (Kingma and Ba, 2014),

but since these might interfere with our analysis of this work, they are not used.

Finally, there is a vast litterature concerning Convolutional Neural Networks

(Krizhevsky et al., 2012; He et al., 2015b; Huang et al., 2016) and what they learn

(Zeiler and Fergus, 2014; Li et al., 2015).



3
Reinforcement Learning

3.1 The Reinforcement Learning Setting

Reinforcement Learning (RL) is concerned about decision making, both in immediate

and temporal settings. Note that the material presented in this section is but a

small subset of RL methods, necessary to understand the rest of the work. Thorough

explanations of the material are found in the works of Sutton and Barto (1998) and

Szepesvári (2010).

RL is commonly viewed as reducing problems to the agent-environment setting,

illustrated in Figure 3.1. An agent, which can for example be a collection of sen-

sors and actuators or a game playing program, resides in an environment. At each

discrete time-step t, the agent receives information about its state. From that infor-

mation, it makes an action, which will (possibly) influence the environment, resulting

in a new state observation, along with a reward.

Agent

Environment

rtst

state reward
at

action
rt+1

st+1

Figure 3.1: The RL Environment diagram

29
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Often, the goal will be for the agent to learn to maximize its reward. To do so it

may have to overcome several challenges, such as delayed rewards, partially observable

states, or vast state and action spaces.

3.2 The Markov Decision Process Setting

Markov decision processes (Bellman, 1956) are a formal tool used to describe prob-

lems in reinforcement learning, as they are well suited to describe total-information

stochastic (or deterministic) environments.

A Markov decision process (MDP) M is defined as a tuple (S,A,P ,R):

• S is the (possibly infinite) set of states;

• A is the (possibly infinite) set of actions; A can also be state-dependent;

• P(s, s′, a) is the transition probability from s to s′ given that action a is taken;

• R(s, s′, a) is the reward received from action a when going from s to s′.

Markovian processes are interesting because they follow this rule:

P (st|st−1, at−1) = P (st|st−1, at−1, st−2, ..., s0, a0)

which is that the next state only depends on the current state. An agent living in a

Markovian environment only needs to know about the most recent state in order to

know about the future. It does not require memory (at least in principle). In this

setting, a sequence of state-action-reward tuples is described as a trajectory τ .

3.2.1 Policies and Stochastic Policies

Consider a memory-less agent which at each moment in time receives the current

state information, and gets to choose an action. This behaviour can be formalized

as a policy π : S → A, which maps states to actions, indicating what to do at
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each moment. In a more general way, we can formulate a stochastic policy as a

conditional probability distribution π(a|s); given a state there is a distribution over

each action. We will assume that policies are stochastic for the rest of this work.

It is often the goal of reinforcement learning methods to find a policy which is

optimal with respect to the environment that is given, or to find a policy which

matches the policy of an expert agent (e.g., a human). A policy which is as good as

or better in expectation than all other policies, in terms of accumulating reward, is

called an optimal policy.

In a stochastic –or simply unexplored– environment it can be desirable to have a

stochastic policy, that is, to take actions according to some state-dependent proba-

bility distribution π(a|s). A simple case of such a policy is a Bernoulli policy, where

one of two actions is chosen at random according to some probability p. A slightly

better policy might be to make this probability input-dependent, and compute it as a

function of the state. Stochastic policies make deriving some learning methods harder,

and others simpler, simply due to the nature and properties of random variables.

3.2.2 Value Functions

It is an interesting problem, and often a necessary step, to be able to judge how good

a given state is. The value of a state is defined recursively as:

V π(s) = Es′a{R(s)|π}

=
∑

a

π(a|s)
∑
s′
P(s, s′, a) [R(s, s′, a) + V π(s′)]

It is the expected cumulative reward (also known as return) that can be received

in s and in all following states when following the policy π.

It is also possible to measure discounted reward, and instead of seeing infinitely far

in the future in terms of reward, prioritizing nearer states by an exponential factor γ:

V π(s) =
∑

a

π(a|s)
∑
s′
P(s, s′, a) [R(s, s′, a) + γV π(s′)]
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One can also express the action-value function, the expected cumulative reward

when in state s and taking action a

Qπ(s, a) =
∑
s′
P(s, s′, a) [R(s, s′, a) + γV π(s′)] (3.1)

It is desirable to learn or measure the value function of an MDP, as it can allow an

agent to chose which state to visit next if it wants to maximize reward. Unfortunately,

in complex environments this can be a hard, or even intractable problem.

Under the optimal policy, the value functions are called optimal value functions,

V ∗ and Q∗, since they represent choosing the optimal action at each time-step.

Q∗(s, a) =
∑
s′
P(s, s′, a) [R(s, s′, a) + γV ∗(s′)]

V ∗(s) = max
a

Q∗(s, a)

The simplest policy that can be used in conjunction with a value function is the

ϵ-greedy policy, which simply consists in taking the action which leads to the state

with highest value function, but take a uniformly random action with probability ϵ.

In the case where ϵ = 0, it is simply the greedy policy.

3.3 Learning Value Functions

There are many algorithms that can learn value functions (Sutton and Barto, 1998),

most of which we will not cover. As described in Section 2.1.2, it is possible to learn

a tabular value function if the number of states (and possibly the number of actions)

is small enough, or is discretizable into a small set.

In the other case, if the number of states is continuous or too large, it is also

possible to use function approximation to learn V (s) or Q(s, a). Doing so poses a

major problem: when going through an MDP we can collect trajectories – sequences

of states, actions and rewards – as a data set, but while one can consider trajectories
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to be i.i.d., the tuples (s, a, r, s′) of which they are made are not i.i.d., which makes

them unsuitable for typical function approximation learning methods.

Fortunately, there are ways to mitigate this problem, such as using experience

replay (Lin, 1992), which makes it possible to learn function approximators on large

input spaces (Mnih et al., 2015).

The Q-Learning (Watkins, 1989) algorithm is an iterative way of learning Q func-

tions. An intuitive derivation of the algorithm follows.

Consider having a parameterized estimate of the Q function Qθ(s, a), and consider

that we are under the ϵ-greedy policy. We can now rewrite (3.1) as:

Qπ(s, a) =
∑
s′
P(s, s′, a) [R(s, s′, a) + γV π(s′)] (3.1)

Qθ(s, a) =
∑
s′
P(s, s′, a)R(s, s′, a) +

∑
s′
P(s, s′, a)γV π(s′)

under a greedy policy π, V π
θ (s′) = max

a
Qθ(s′, a)

=R(s, a) + γ
∑
s′
P(s, s′, a) max

a
Qθ(s′, a)

Now consider that we are constantly sampling trajectories from the environment.

The transition probability P(s, s′, a) is “naturally” taken into account from the sam-

pling. For a given sample (st, at, rt, st+1), where rt ∼ R(st, at), the following should

hold true (assuming θ is reasonably good):

Qθ(st, at) ≈ rt + γ max
a

Qθ(st+1, a)

Since at the beginning of training Qθ will be mostly wrong, this will in fact lead

to an error term:

δ = |rt + γ max
a

Qθ(st+1, a)−Qθ(st, at)|

To reduce the error, one can update Qθ to explicitly minimize δ using the previously

seen supervised learning methods1, or in the tabular case, update Q(s, a):

Qk+1(st, at)← Qk(st, at) + α[rt + max
a

Qk(st+1, a)−Qk(st, at)]
1This is not as simple as it may look, mainly due to the data distribution used in learning not

being i.i.d., and due to the bootstrapping problem. There are various methods to make this work,
see Mnih et al. (2015) for example.
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where α is the learning rate, at which the values of Q are updated.

3.4 Learning Policies with Policy

Gradient Methods

In some systems, it can be advantageous to learn policies directly, instead of first

learning value functions and selecting optimal actions. Just as for value functions,

if the state and action spaces are discrete (or discretizable) and small enough, it is

possible to learn an explicit mapping S → A or as a stochastic mapping π(a|s).

In many cases, most commonly when the state space is too large, it is necessary

to use function approximation. For this, it is necessary to have a parameterization of

the policies either as a deterministic fθ : S → A or as a stochastic function πθ(a|s).

Learning policies directly has a few advantages, notably when the value functions

are hard to approximate or when a stochastic policy is desired. In some cases, when

the end-goal is to learn an optimal policy, it can simply be more convenient, and

reduce the number of parameters that one has to learn.

Just as it is possible to learn function approximators in the supervised case with

gradient descent, similar methods can be applied to parameterized policies, albeit

with a few major differences. I the problems that are relevant here, actions are

typically “hard” decisions, and there does not exist a derivative of some loss (or

reward) with respect to having taken the action (or not). As such, it is not trivial

to obtain the gradient of the parameters that goes in the direction of maximizing

the rewards. Fortunately, there are methods that compute approximations of these

gradients. Using these methods to search among the space of policy functions is

known as policy search.
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3.4.1 REINFORCE

REINFORCE (Williams, 1992), also known as the likelihood ratio method (Glynn,

1987), is a policy search algorithm. It computes an unbiased estimate of the gradient,

and uses it to perform policy search in the direction that minimizes loss.

The objective function of a parameterized policy πθ for the cumulative return (the

total reward received) of a trajectory τ of length T is described as:

J(θ) = Eπθ
τ

{
T∑

t=1
r(St, At)

⏐⏐⏐⏐⏐S0 = s0

}

where s0 is the initial state of the trajectory. Let R(τ) denote the return for trajectory

τ . The gradient of the objective with respect to the parameters of the policy is:

∇θJ(θ) = ∇θEπθ
τ {R(τ)}

= ∇θ

∫
τ
P{τ |θ}R(τ)dτ

=
∫

τ
∇θ [P{τ |θ}R(τ)] dτ (3.2)

Note that the interchange in (3.2) is only valid under some assumptions (see Silver

et al. (2014)).

∇θJ(θ) =
∫

τ
∇θ [P{τ |θ}R(τ)] dτ

=
∫

τ
[R(τ)∇θP{τ |θ}+∇θR(τ)P{τ |θ}] dτ (3.3)

=
∫

τ

[
R(τ)
P{τ |θ}∇θP{τ |θ}+∇θR(τ)

]
P{τ |θ}dτ

= Eπθ
τ {R(τ)∇θ logP{τ |θ}+∇θR(τ)} (3.4)

The product rule of derivatives is used in (3.3), and the derivative of a log in (3.4).

Since R(τ) does not depend on θ directly, the gradient ∇θR(τ) is zero. We end up

with this gradient:

∇θJ(θ) = Eπθ
τ {R(τ)∇θ logP{τ |θ}} (3.5)



CHAPTER 3. REINFORCEMENT LEARNING 36

Without knowing the transition probabilities, we cannot compute the probability of

our trajectories P{τ |θ}, or their gradient. Fortunately, we are in a MDP setting, and

we can make use of the Markov property of the trajectories to compute the gradient:

∇θ logP{τ |θ} = ∇θ log
[
p(s0)

T∏
t=1

P{st+1|st, at}πθ(at|st)
]

= ∇θ log p(s0) +
T∑

t=1
∇θ logP{st+1|st, at}+∇θ log πθ(at|st) (3.6)

=
T∑

t=1
∇θ log πθ(at|st)

In (3.6), p(s0) does not depend on θ, so the gradient is zero. Similarly, P{st+1|st, at}

does not depend on θ (not in a differentiable way at least), so the gradient is also

zero. We end up with the gradient of the log policy, which is easy to compute.

In the case where the trajectories only have a single step, the summation disappears

and the gradient is found by taking the log of the probability of the sampled action:

∇θR(s) = E {R(s)∇θ log πθ(a|s)} (3.7)

3.4.1.1 Reducing variance in REINFORCE

Just as in stochastic gradient descent, it is only useful (and computationally tractable)

to use stochastic samples of the data in order to approximate the full gradient in (3.7).

A problem can arise if the length of the trajectories is large or if the number of

possible actions per-step is large. Since a particular trajectory or action sample has

an intrinsic low probability (simply because there are many possibilities) its gradient’s

distance to the full expected gradient will be large. This gives rise to a high variance

estimator.

There are many ways of reducing variance in policy gradient methods, some work

by incurring bias (Sutton et al., 1999), while some manage to reduce the variance

without adding bias (Greensmith et al., 2004; Weaver and Tao, 2001).

A simple way to reduce variance without adding bias in REINFORCE is by mod-

ifying the reward signal by subtracting a baseline b.
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∇θR(s) = E {(R(s)− b)∇θ log πθ(a|s)} (3.8)

There are many ways to formulate the baseline, the simplest being to use the

average reward. In this case an interesting interpretation of REINFORCE can be

made, where if an action has a higher reward than the average, its probability will be

increased, while if it is lower, its probability will be reduced.



4
Conditional Computation in Deep Networks

through Policies

Conditional computation (Bengio et al., 2013; Davis and Arel, 2013) is concerned with

reducing the amount of computation made by some models, it does so by actively

selecting parts of it that are to be computed given the current input. This problem

can be viewed as a sequential decision making problem that takes place inside inside

a traditional machine learning algorithm.

Having presented artificial neural networks and reinforcement learning, this chap-

ter explains how the two are used in conjunction in order to create efficient conditional

computation models.

State-of-the-art models are geting larger and larger every year, and even with

the massive increase in computation via distributed systems and massively parallel

hardware, it is non-trivial to deploy such models such that they can be used in real-

time, since most target hardware does not have access to the same kind of massive

computation hardware (e.g. mobile phones). As such, there is a need for a compu-

tation scheme that speeds up such models. The proposed approach to conditional

computation is a step in this direction.

38
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4.1 Defining Conditional Computation

The problem of conditional computation can be expressed as follows: how can a model

choose to perform as few computations as possible, and still make correct predictions?

Let us start by giving a definition of computation.

In a function approximator, the prediction y = f(x; θ) is typically done using many

steps of computation, computing intermediate values up to the final result. Sometimes

these steps can be done in parallel, sometimes one step depends on a previous one.

Let us define a computation graph ⟨V, E⟩. We denote the set of intermediate

values as V = {v0, v1, ..., vn} ∪ {x0, ..., xd}, and the set of dependencies as directed

edges E = {(vi, vj) | computing vj requires vi}. Conditional computation can act on

the edges of this computation graph. Consider the function a : X → {0, 1}|E|. Given

an input x, c outputs a binary vector, associating each edge (va, vb) to either 0 or 1.

On a 1, the normal computation occurs. On a 0, vb is computed while ignoring the

value of va and considering it to be either 0 or some other predefined value (either

a constant, or a ancestor node in the graph). If for all edges (va, vj), the associated

a(x)va,vj
is 0, then va does not need to be computed.

This last phenomenon can be encoded in the function a : X → {0, 1}|V |. Given

an input x, a(x)vi
= 0 means that vi does not need to be computed. Now consider

dividing V into disjoint subsets νi. Instead of associating to each intermediate value

a conditional computation flag a(x)vi
, we can associate to each subset a single flag

a(x)νi
.

The success of conditional computation relies on the idea of sparse (and thus

faster) computation. If the number of subsets is substantially smaller than the size of

V , then the computation of a(x)ν will only incur a slight overhead. Additionally, if

the number of non-zero a(x)is is small, then most intermediate values will not need

to be computed, resulting in fewer computations being needed.

In neural network models a very natural computation graph arises from the struc-
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Figure 2.3: A multilayer perceptron with 2 hidden layers, one of 6 units, one of 3
units. The output layer has 2 units.

ture of the network. Consider Figure 2.3 (reproduced here), at layer i each node h
(i)
j

is computed as:

h
(i)
j =

∑
k

W
(i)
kj h

(i−1)
k

There are at least two “computation-skipping” mechanisms that we can use in

such a computation when the computation flag is 0: akin to dropout (Hinton et al.,

2012), “drop” the unit h
(i)
j = 0; or, akin to residual networks (He et al., 2015a), “skip”

the unit h
(i)
j = h

(i−1)
j .

In the same spirit, there are two natural grouping mechanisms which one can use.

Since many units are often required to disentangle features, it is logical that within

a layer some features will often activate together, as observed by Li et al. (2015). As

such we can divide hidden layers into groups of hidden units, that are all dropped or

activated altogether.

One can also group a whole layer into a computation subset, and conditionally skip

layers. This especially makes sense in the computer vision setting, where applying a

specific convolutional layer in a very deep network extracts a particular set of visual

patterns which might not be present, in which case skipping the layer is justified.
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4.2 Conditional Computation as a Policy

This work is an attempt to illustrate that conditional computation in a deep neural

network model can naturally be viewed as sequential decision making problem. At

each layer, given information on the current state of the computation (what has been

computed so far), one has to decide which units to compute.

There is also a natural, delayed reward measure, given by the error at the output

of the network; one can further impose rewards that encourage sparsity in the com-

putation, or a fast computation time. This view makes this problem a natural fit for

reinforcement learning algorithms.

In the previous section we defined a computation function a : X → {0, 1}n. This

function can naturally be seen as a policy πθ(a|x), where the state space is X and the

action space is this computation flag vector space {0, 1}n.The sequential case also takes

the same form, where at each layer, decisions about the next layer’s computations are

made depending on the state of the computation, thus creating a temporal delayed-

reward setting with a policy that maps some intermediate computationsH to a binary

vector {0, 1}k.

Finally, in the context of learning a conditional computation policy, it is undesir-

able to have a deterministic policy. For two close deterministic policies, the expected

gradient would change greatly between one and the other (since we are always taking

the same action for some input), making learning unstable. On the other hand, for

two close stochastic policies, the probabilities of actions will be close to one another,

and so their expected gradients will be similar, making learning more stable. As such,

we will learn and use stochastic Bernoulli policies to achieve conditional computation.

Learning Conditional Computation policies

Now that the problem of conditional computation is framed as a reinforcement

learning problem with stochastic policies, this work shows it is possible to learn these
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models and their policies using the frameworks seen in sections 2.2.4 and 3.4.1. Note

that we will refer to the principal neural network (e.g. the classifier or regressor) as

target, or target model, and neural network outputting the policy as the policy model,

or simply policy.

In this particular case, the negative reward signal of the policy received after

taking actions can be set to be the loss of the target model L, as for example in

Section 2.1.4. As such we perform gradient descent on the policy parameters using

the REINFORCE estimator in the following form:

∇θL(x) = Ex∼X {(L(x)− b)∇θ log πθ(a|x)}

Here πθ(a|x) is the probability of the sampled as. We assume there is some pa-

rameterization of the policy model fπ(x; θ), possibly a neural network itself, that

outputs a vector in [0, 1]n, and a is sampled as a vector of Bernoullis with probabili-

ties fπ(x; θ) = [σ1 σ2 ... σn]T . Its log probability is simply:

log
∏

i

[aiσi + (1− ai)(1− σi)] =
∑

i

log [aiσi + (1− ai)(1− σi)]

Note that the learning of the target model must occur simultaneously to the learn-

ing of the policy: consider the scenario where blocks of hidden units are dropped (the

same reasoning applies in other scenarios). If the target model is learned first, then

the units that activate together must be grouped correctly1, otherwise the computa-

tion policy will not be of any help; this creates a new, possibly harder, problem of

grouping units correctly. On the other hand if the policy is learned first (with the

target model at its initial random weights), then the policy has no way of effectively

reducing the error, since the target model outputs mostly random and unstructured

values (as it has yet to learn).
1As is suggested by litterature concerning dropout, units often coadapt to form some partic-

ular computational structure. Even with dropout training, this still occurs, only much less. As
such, grouping units arbitrarily post-training has a high chance of perturbing these structures and
negatively affecting accuracy.
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4.3 Guiding Policy Search

As mentioned in the previous section:

• the aim of conditional computation is to perform few computations;

• it is easy to impose additional constraints to minimize computations.

Such constraints can take two forms. The first, most straightforward one, is to

modify the reward signal to include some computation cost, either as a proxy (i.e. the

number of activated nodes) or as a direct measure (i.e. elapsed time). Unfortunately,

such a direct modification could add variance to an already high-variance estimator.

The second possible modification is to use regularization. Regularization has the

advantage of being differentiable, and as such smoother (it varies consistently with

the gradient).

This work introduces three differentiable regularization terms that act on the

Bernoulli probabilities [σ1 σ2 ... σn]T of the stochastic policies, rather than on the

action samples. The first two terms, Lb and Le force the policies to achieve some

sparsity hyperparameter target ratio τ .

Lb =
n∑
j

∥EX{σj} − τ∥2
2

Le = EX{∥(
1
n

n∑
j

σj)− τ∥2
2}

The first term Lb penalizes each σj independently, pushing σj to be τ in expectation

over the data. The second term Le penalizes σjs together, forcing that for a given

example only some σjs can be high while others are low.

The third term is optional, but speeds up learning, as it forces policies to be

“varied” and thus to be more input dependent:

Lv = −
n∑
j

vari{σij}
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These regularization terms can be optimized via gradient descent, simultaneously

to the training of the target model and the policy. The additional loss term can be

expressed as:

Lreg = λs(Lb + Le) + λv(Lv)

where λs and λv are hyperparameters that dictate the desired strength of the regu-

larization.

4.4 Structure of conditional computation

policies in deep models

Conditional computation can be added to models through all kinds of parameteriza-

tions. There are a few criteria that must be met in order to ensure that applying

conditional computation is useful:

• there should be a natural and hardware-friendly way to distribute computation;

• the number of computation subsets should be at least an order of magnitude

smaller than the number of parameters;

• the overhead of computing the policy should be minimal;

• each computation subset should be “capable” of discriminating a subset of the

input space.

We proposed and investigated the performance of two such models, in the context

of training Deep Neural Networks.

4.4.1 Fully connected architectures

A common observation in fully connected neural architectures is that their activation

is often very sparse: i.e., most of the neurons tend to be zero, especially when using

activation functions such as rectifying linear units.
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Another observation, now empirically verified (Li et al., 2015), is that neurons tend

to detect the presence of multiple patterns together, and as such form natural relevant

groups of computation (which we can assume are conditioned on input subspaces).

As such, a natural way of grouping computation in this architecture is, for a given

layer, to divide neurons into groups, which we well refer to as blocks. For this division

to be hardware friendly, we impose for all groups to have the same size.

With these groupings, a way of parameterizing the policy is to associate a Bernoulli

unit to each group, and make this unit dependent on the activations of the previous

layer. This is illustrated in Figure 4.1.

Figure 4.1: A fully-connected block conditional computation architecture. In blue,
the target model, divided in blocks of units. In red, the computation policy, calculated
from the previous layer’s activation.

The policy units themselves are computed as normal sigmoid units, with a different

set of weights for each layer (each predicting the policy for all the layer’s blocks):

σ(i) = s(W πih + bπi)

where s is the sigmoid function (see Section 2.1.5, here σ instead denotes the policy

probabilities).

4.4.2 Convolutional architectures

In the convolutional setting, there are many ways in which we could turn off parts

of the target model, some more expensive than others. For example we could choose
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which channels we want to use at each layer, but that would require the policy to be

complex and expensive.

A simple alternative, inspired by Huang et al. (2016), is to skip layers in a residual

manner. If layer i is skipped, then the input of layer i + 1 is simply the activations

of layer i− 1 (which can itself be the result of a skip). In Huang et al. (2016) layers

are randomly skipped during training, in a similar fashion as dropout (Hinton et al.,

2012).

In this case, we would like to use conditional computation to choose which layers

to skip as a function of the input. As such the policy only has to have a single unit

per layer. This is illustrated in Figure 4.2.

Figure 4.2: A convolutional layer-skipping architecture

4.5 Related Work

Ba and Frey (2013) proposed a learning algorithm called standout for computing

an input-dependent dropout distribution at every node. As opposed to our layer-

wise method, standout computes a one-shot dropout mask over the entire network,

conditioned on the input to the network. Additionally, masks are unit-wise, while

our approach is more general and can handle groups of units, for example it can

use masks that span blocks of units. Bengio et al. (2013) introduced Stochastic

Times Smooth neurons as gaters for conditional computation within a deep neural

network. STS neurons are highly non-linear and non-differentiable functions learned

using estimators of the gradient obtained through REINFORCE. They allow a sparse
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binary gater to be computed as a function of the input, thus reducing computations

in the then sparse activation of hidden layers.

Stollenga et al. (2014) recently proposed to learn a sequential decision process over

the filters of a convolutional neural network (CNN). As in our work, a direct policy

search method was chosen to find the parameters of a control policy. Their problem

formulation differs from ours mainly in the notion of decision “stage”. In their model,

an input is first fed through a network, the activations are computed during forward

propagation then they are served to the next decision stage. The goal of the policy is

to select relevant filters from the previous stage to improve the decision accuracy on

the current example. They also use a gradient-free evolutionary algorithm, in contrast

to our gradient-based method.

The Deep Sequential Neural Network (DSNN) model of Denoyer and Gallinari

(2014) is possibly closest to our approach. The control process is carried over the lay-

ers of the network and uses the output of the previous layer to compute actions. The

REINFORCE algorithm is used to train the policy with the reward/cost function be-

ing defined as the loss at the output in the base network. DSNN considers the general

problem of choosing between different type of mappings (weights) in a composition

of functions. However, they test their model on datasets in which different modes are

prominent, making it easy for a policy to distinguish between them.

Another point of comparison for our work are the recent attention models (Mnih

et al., 2014; Gregor et al., 2015; Xu et al., 2015). These models typically learn a pol-

icy, or a form of policy, that allows them to selectively attend to parts of their input

sequentially, in a visual 2D environment. Both attention and conditional computation

share a goal of reducing computation times and maintaining accuracy. While atten-

tion aims to perform dense computations on subsets of the inputs, our conditional

computation approach aims to be more general, since the policy can target subsets

of computation throughout the network architecture. As such, it can lead to more

distributed computation at various levels of feature resolution. It should be possible
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to combine these two approaches, since one acts on the input space and the other acts

on the representation space, although the required policy space to do this may well

be more complex, and thus harder to train.



5
Empirical Evaluation

In this chapter we cover both implementation details and empirical results of exper-

iments made to illustrate the capabilities of the conditional computation framework.

For our experiments we made extensive use of the Theano library (Theano Develop-

ment Team, 2016), and implement naive sparse computation algorithms.

5.1 Sparse Matrix Operations

In Section 4.4.1 we showed how to build a fully-connected block architecture, and in

Section 4.3 we showed how to regularize such architectures so that they are sparse.

If the computation policies are sparse enough, then it becomes advantageous to

explicitly not compute zero’ed units (which would otherwise be zeroed via a multi-

plicative mask).

We implemented such an algorithm on both CPU (in C) and GPU (in CUDA), as

Theano Ops (building blocks of the library’s computation graphs).

In the convolutional case, the model described in Section 4.4.2 has a very sim-

ple conditional structure. If a layer’s flag is 0, it is simply not computed and its

input is passed on to the next layer. As such there is no need for any specialized

implementation.

49
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5.1.1 Structure of sparse blocks

Consider two layers, the input layer i− 1 and output layer i, for each of these layers

the policy was sampled into a binary vector, which we will refer to as mask. In the

minibatch setting, the many vectors are joined into mask matrices M (i−1) and M (i).

As such the computation (implicitly taking into account bias and activation function)

of the output of layer i is:

H(i) = (H(i−1) ×W (i))⊙M (i) (5.1)

where in fact H(i−1) = H(i−1) ⊙M (i−1). The structure of the non-zero entries in this

computation is illustrated in Figure 5.1.

⎛⎜⎜⎝ ×
T
⎞⎟⎟⎠⊗

=

Figure 5.1: A sparse matrix-matrix product

5.1.2 CPU implementation

A very natural algorithm follows from this sparse structure.

For every non-zero entry in M (i), compute the dot product at that location, say

x, y, only taking into account W
(i)
xk and H

(i−1)
ky where M

(i−1)
ky is non-zero. Since each

non-zero entry of the masks spans several units (because they are grouped in blocks),

the full masks need not to be represented explicitly, and this computation happens

somewhat locally densely (in terms of memory local to that block).

Implementing this algorithm in the C programming language, we can measure the

impact of using the algorithm versus doing the full computation (which in Theano is

done using BLAS’s gemm, GEneral Matrix Multiplication operation).
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Figure 5.2 illustrates the obtained speedup for a particular instance, 32 blocks of

size 32, with a minibatch size of 32. We can observe that below 30% sparsity, using

such a sparse dot product implementation is faster.
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Figure 5.2: Timing of a sparse matrix-matrix product for different sparsity rates.

We also measure how this speedup evolves with respect to the size of blocks.

This is illustrated in Figure 5.3. We observe that having too small blocks hinders

performance. At the same time, it is not necessarily enviable, from the target model’s

point of view, to have very large blocks, thus a trade-off is necessary.

5.1.3 Anatomy of a GPGPU

General Purpose Graphical Processing Units, GPGPUs, are specialized hardware

mainly used to generate rasterized images, but which can also be used to achieve

significant computation gains.

GPGPUs are a very advantageous hardware to use when doing parallel compu-

tations, because they are inherently massively parallel. Such computations include

matrix multiplication, and convolutions.
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Figure 5.3: Timing of a sparse matrix-matrix product for different block sizes, aver-
aged over different sparsity rates.

GPGPUs are made of hundreds, sometimes thousands of cores. They have a

fundamental difference with typical CPU coreswhich allows many cores to function at

the same time. They are grouped together in clusters, and within each cluster every

core has to be executing the same instruction. GPGPU programs in which this is not

the case will cause the execution to branch. If two cores in the same cluster branch

off (e.g. as the result of an if), simultaneous execution is no longer possible: the true

branch of the if will be executed, and then the false branch (which can cause massive

slowdown of execution if it happens often).

5.1.4 GPU implementation

Simply rewriting the CPU implementation in CUDA (for NVIDIA GPGPUs) would

not work, since as explained in the last section, conditioning execution of each block

on whether its associated flag is 0 or 1 will catastrophically break parallelism.

As such the GPU implementation is done in 2 passes, where the first pass is deter-
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mining which blocks are non-zero, and the second pass is actually doing the computa-

tions for these non-zero blocks only. As such the “kernel” (parallel subprogram which

is launched for each core) is only launched for blocks where there is computation, so

that no branching happens.

Figure 5.4 illustrates the obtained speedup for a particular instance on GPGPU,

again 32 blocks of size 32, with a minibatch size of 32. We can observe that below

17% sparsity, using this implementation is faster.
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Figure 5.4: Timing of a sparse product for different sparsity rates on the GPU.

Comparing figures 5.2 and 5.4, we see that the GPU implementation is much faster

than the CPU implementation, but less amenable to sparsity, as the GPGPU cuBLAS

implementation of the matrix product is also much faster.

5.2 Image Experiments

We experiment on 3 datasets, MNIST (LeCun et al., 1998a), CIFAR-10 (Krizhevsky

and Hinton, 2009), and SVHN (Netzer et al., 2011). We compare neural networks
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trained with a conditional computation mechanism to those without, and see whether

they can achieve similar accuracy while reducing the time required to perform com-

putations.

5.2.1 MNIST

MNIST (LeCun et al., 1998a) is a simple classification dataset consisting of 28×28

grayscale images of handwritten digits. The task is to indentify the class of a digit

among 10 possible classes. It has long been regarded as a standard benchmark in

the Deep Learning community, and is now commonly used as a sanity check when

creating new architectures.

Figure 5.5: MNIST samples

For this task, we hand-pick sensible hyperparameters to conduct sanity checks,

and we use a target model with a single hidden layer of 16 blocks of 16 units (256

units total), with a target sparsity rate of τ = 6.25% = 1/16, learning rates of 10−3

for the neural network and 5 × 10−5 for the policy, λv = λs = 200 and λL2 = 0.005.

Under these conditions, a test error of around 2.3% is achieved. A normal (without

any conditional computation policy) neural network with the same number of hidden

units achieves a test error of around 1.9%, while a normal neural network with a similar

amount of computation (multiply-adds) being made (32 hidden units) achieves a test

error of around 2.8%.

While not beating state-of-the-art, which is not our intent here, we obtain low error

and similar results to a normal neural network. Since the computation performed

in our model is sparse, one could hope that it achieves this performance with less

computation time, yet we consistently observe that models that deal with MNIST
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are too small to allow our specialized sparse implementation (Section 5.1) to make a

substantial difference.

5.2.1.1 Learned policies

What is interesting for MNIST is analyzing the policies of conditional computation

that were learned for this model.

Figure 5.6 illustrates the activation of the policy units. Each unit, associated with

a block of units in the target model, has a particular index on the x axis. On the y

axis the policy probabilities, σis, are plotted as a transparent dot for each sample.

In Figure 5.6a, only examples of class 0 are plotted, showing that only some of the

blocks are used by the policy. In Figure 5.6b, only examples of class 1 are plotted,

again showing that only some of the blocks are used, but they are different blocks

than for class 0. Figure 5.6c shows the plot for all classes, showing that across its

input space, across classes, the policy has learned to balance which blocks are being

used given an input, always achieving some fair amount of sparsity.

Note that regularization is required for such results, but that λv seems to mostly

help to speed up (sometimes drastically) convergence.

These results show that this framework for conditional computation is capable of

learning sensible policies that separate the input space and specialize computation to

a limited number of computation subsets.

5.2.1.2 Is learning the policy helpful?

As mentioned in Section 2.3.1, randomly dropping units in a neural network has

proved to be an effective method for learning models. Considering this, we compare

using random uniform policies, similarly to the dropout scenario (Hinton et al., 2012),

to learning conditional computation policies.

The results can be see in Figure 5.7, where measured sparsity rates are plotted

against validation error. As sparsity is increased, the performance of a uniform policy
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(a) Policy activation for samples of class 0

(b) Policy activation for samples of class 1

(c) Policy activation for samples of all classes

Figure 5.6: MNIST, (a,b,c), probability distribution of the policy, each example’s
probability (y axis) of activating each unit (x axis) is plotted as a transparent red
dot. Redder regions represent more examples falling in the probability region. Plot
(a) is for class ’0’, (b) for class ’1’, (c) for all classes.
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Figure 5.7: Varying sparsity rates, comparing learned policies to uniform policies

on MNIST gets worse and worse, while the performance of a learned computation

policy stays stable, even in the most extreme cases.

5.2.2 SVHN

The Street View House Numbers (SVHN, Netzer et al. (2011)) is a classification

dataset consisting of 32×32 RGB images of digits, extracted from images of street

building addresses. It is similar to the MNIST dataset, but much harder due to

the greater variation in digit orientation and additional texture noise, as well as the

confounding nearby digits.

To test the robustness of our framework, we performed a hyperparameter explo-

ration over fully-connected architectures, which is summarized by Figure 5.9.

We see that using conditional computation, with a specialized sparse operation,
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Figure 5.8: Street View House Numbers dataset samples
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Figure 5.9: SVHN, each point is an experiment. The x axis is the time required to do
a full pass over the valid dataset (log scale, lower is better). NN is a normal neural
network, condnet is the present approach.

achieves better results than similar fully-connected architectures, at a much lower

computational cost. Specific results are selected and shown in Figure 5.10.

It seems that by varying hyperparameters, it is possible to manually control the

trade-off between high-accuracy and low computation time. In the next section on

CIFAR-10, we design experiments that specifically highlight this fact.

5.2.3 CIFAR-10

The CIFAR-10 dataset is a classification dataset of 32×32 natural RGB images of

10 different classes of objects: airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, truck.

It is a much harder dataset than SVHN, and it is hard to get less than 50% test
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model error τ #blocks k test time
condnet .183 1/11 13,8 16 1.5s(1.4×)
condnet .139 .04,1/7 27,7 16 2.8s (1.6×)
condnet .073 1/22 25,22 32 10.2s(1.4×)

NN .116 - 288,928 1 4.8s
NN .100 - 800,736 1 10.7s
NN .091 - 1280,1056 1 16.8s

Figure 5.10: SVHN results. condnet: the present approach, NN: Neural Network
without the conditional activations. k is the block size. “test time” is the time
required to do a full pass over the test dataset; in parenthesis is the speedup factor
compared to run-time without the specialized implementation.

Figure 5.11: CIFAR-10 dataset samples

error without using convolutional models. As such we test both fully-connected and

convolutional architectures on this dataset.

5.2.3.1 The speed-performance trade-off

Simply by controlling how much sparsity is enforced through the hyperparameter λs

(see Section 4.3), it is possible to control the trade-off between having a fast model,

and having a low-error model.

This can be seen in Figure 5.12, where we retrained the same fully-connected

condnet architecture with several different values of λs. We plot both the resulting

run-time of each model, as well as its validation error, and effectively observe the

strong trade-off control effect of λs.

5.2.3.2 Regularizing early policies

By controlling the hyperparameter λv (see Section 4.3), it is possible to encourage

policies not to be uniform. This can be beneficial early in training, as it pushes
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Figure 5.12: The effect of λs when training fully-connected conditional computation
architectures

the policies to somehow separate the input space and force the model’s computation

subsets to specialize.

This can be seen in Figure 5.13. As λv gets bigger, the error goes down more

rapidly, although it is to be noted that in convergence all the models reach the same

error (some faster than others).
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Figure 5.13: The effect of λv when training fully-connected conditional computation
architectures
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model test error # of layers τ test time
conv-condnet .157 12 0.5 1.03s
conv-condnet .167 12 0.3 0.84s
conv-condnet .176 12 0.2 0.66s
conv-condnet .173 6 0.5 0.58s

conv-NN .159 12 - 1.07s

Figure 5.14: CIFAR-10 convolutional model results. conv-condnet is our approach,
conv-NN is a convolutional network with no layers dropped out. Time measured on
a NVIDIA Titan X GPU.

5.2.3.3 Training convolutional architectures

We also trained convolutional architectures as shown in Section 4.4.2. In the convnet

case, it is easy architecturally to obtain speedups, but it seems much harder to train

policies that correctly separate the input space.

Instead, regardless of complexity of depth, most of the learned policies seemed to

divide computation in two, sometimes three groups, and assigned layers to each of

those groups, making the policy a much weaker in terms of helping to minimize loss.

We show some results in Figure 5.14.

5.3 Empirical Observations on Learning Policies

5.3.1 Time, computation and energy consumption

Throughout experiments, wall time of computing the forward pass over the entire

validation set in minibatches is the primary measure of how well sparse computations

are doing. Time is not necessarily the best measure, but is for now the one that best

depicts reality in terms of deployment of Machine Learning models.

Counting the theoretical number of operations is the simplest comparison measure.

In fact, it is so simple that it is not representative of modern hardware, and how it

operates.
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In the fully connected case, for two successive sparse layers of n units with a

sparsity rate of τ , the complexity of the forward pass is in O(n3τ 2).

In the layer-skipping case, it is simply linear in τ , the less layers are active, the

less computation happens.

5.3.2 Streaming data in the fully-connected case

A use case where fully-connected conditional computation as presented in this work

(and sparse computation implementations) could provide a massive advantage is in

the case of streaming data; when each example is passed through the model one at

a time, instead of in minibatches of many examples. This is a typical setting in

deployment of machine learning models, for example on a mobile phone, where only

one example at a time is to be treated.

In the streaming case, the advantages provided by dense computations in neural

networks is lost since most matrix-matrix operations become matrix-vector operations,

which cannot obtain the same gains.

Repeating measurements for figures 5.2 and 5.9 gives a very different impression in

the case of streaming data. Figure 5.15 shows the same measurement as 5.2– Figure

5.16 shows the same as 5.9 – with a minibatch of size 1, i.e. the streaming case.

We see in the first case that the threshold at which sparse computations are advan-

tageous is now much higher, more than 70%, compared to 30% in the minibatch case.

In the second case, we see that almost all models beat their dense fully-connected

counterparts, in terms of time against accuracy. Some well performing models are

about 10 times faster than fully-connected models with the same accuracy.

5.3.3 Measuring power consumption

Power consumption is a different metric than time, achieving a computation slowly

but without as much power as a faster alternative can prove beneficial to any battery-
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Figure 5.15: Timing of a sparse matrix-matrix product for different sparsity rates and
a minibatch size of 1.
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Figure 5.16: SVHN, each point is an experiment. The x axis is the time required to
do a full pass over the valid dataset in a streaming setting (log scale, lower is better).
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connected computing hardware.

We measured power consumption on a portable x86-64 computer, specifically on a

i5-2467M CPU chip, and found that it unfortunately correlates linearly with time. A

more interesting hardware to run such an experiment would be ARM CPUs, or even

in the extreme case FPGAs (although the bottleneck in this case is memory transfer

rather than computation).

5.4 Discussion

Overall our results show that using Reinforcement Learning for conditional compu-

tation is a sensible choice. Given the right parameterizations, it is possible to learn

policies that separate the input space and specialize subsets of the model parameters.

Given the right sparsity regularizations, it is possible to run these models much faster

than their dense counterparts.

New hyperparameters add complexity to the algorithm, but each has a clear in-

terpretation, and their effect can easily be monitored by visualizing policies during

training (such as in Figure 5.6). Although sensible to these hyperparameters, the

optimization remains relatively robust and it is possible, with little additional effort,

to get as good (or sometimes better) results than with plain deep neural networks.



6
Conclusion and future work

Sparse computations seem like an inherently hard problem with modern architectures,

which perform so well for dense computations. Nonetheless, leveraging Reinforcement

Learning methods to reason about the structure of computations allow us to take

advantage of the structure of Neural Networks, retaining strong accuracy and still

managing to decrease computation time by using sparse algorithms.

Despite the optimization problems that learning such models poses, using strong

regularization terms encouraging sparsity and varied activations enables them to per-

form just as well as their dense counterparts. The hyperparameters for such regular-

ization can be tuned easily, and nicely correlate with the trade-off between precision

and computation time. As such, it is possible to manually control this trade-off by

varying these hyperparameters.

Using specialized algorithms that perform sparse computations based on the con-

ditional policies, it is possible to get large speedups both on CPU and GPGPU ar-

chitectures. Depending on the size of the data, the parameters, the minibatch, and

the sparsity rates, sparse methods can slow down computations on one end, while on

the other end, large speedups of more than 10 times can be obtained, despited using

hardware unfavorable to sparse memory accesses.

There remain many challenges and possible improvements to the presented frame-

work. It is still unclear whether the Reinforcement Learning methods that are used

65
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here are optimal. Even though they perform better than a random baseline, alterna-

tive methods taking into account the temporality of the sequence of computations that

are performed in Neural Networks could perform better. Optimization also remains

an issue, with training times being two to three times longer than normal networks.

Similarly, the combination of the current Reinforcement Learning technique, REIN-

FORCE, and the block structure of computation that is designed in Neural Networks

might not be the most amenable to partial computation. Structures such as trees

or recurrent models might offer different but more powerful conditional computation

architecures, although at an additional optimization cost. It is also possible that

entirely novel architectures of computation could be even more amenable to sparse

computations.

There are also many aspects of this framework that need to be understood. There

is an interplay during learning between what policy is currently used and what di-

rection the main model parameters tend to. It should be possible to caracterize this

interaction, understand whether it is beneficial to the resulting model, or whether it

could be improved or accomplished differently.

It would also be interesting to explore how different such models are from normal

models, how robust they are to changes in policy, or whether they learn different

features. With high sparsity, many less parameters are changed at each learning iter-

ation, and this might affect neural network problems such as the vanishing gradient,

possibly amplifying it; it may as well be interesting to see the effect of momentum

methods on such optimization, as these methods could compensate for the mostly

sparse gradient signals.

Overall, there are good empirical reasons to believe that using Reinforcement

Learning to take hard decisions in Neural Networks is a sensible choice. The re-

sults presented in this work support that such a choice is a sensible framework for

Conditional Computation.
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